A New Secondary Structure Assignment Algorithm Using Cα Backbone Fragments.
نویسندگان
چکیده
The assignment of secondary structure elements in proteins is a key step in the analysis of their structures and functions. We have developed an algorithm, SACF (secondary structure assignment based on Cα fragments), for secondary structure element (SSE) assignment based on the alignment of Cα backbone fragments with central poses derived by clustering known SSE fragments. The assignment algorithm consists of three steps: First, the outlier fragments on known SSEs are detected. Next, the remaining fragments are clustered to obtain the central fragments for each cluster. Finally, the central fragments are used as a template to make assignments. Following a large-scale comparison of 11 secondary structure assignment methods, SACF, KAKSI and PROSS are found to have similar agreement with DSSP, while PCASSO agrees with DSSP best. SACF and PCASSO show preference to reducing residues in N and C cap regions, whereas KAKSI, P-SEA and SEGNO tend to add residues to the terminals when DSSP assignment is taken as standard. Moreover, our algorithm is able to assign subtle helices (310-helix, π-helix and left-handed helix) and make uniform assignments, as well as to detect rare SSEs in β-sheets or long helices as outlier fragments from other programs. The structural uniformity should be useful for protein structure classification and prediction, while outlier fragments underlie the structure-function relationship.
منابع مشابه
PCASSO: A fast and efficient Cα-based method for accurately assigning protein secondary structure elements
Proteins are often characterized in terms of their primary, secondary, tertiary, and quaternary structure. Algorithms such as define secondary structure of proteins (DSSP) can automatically assign protein secondary structure based on the backbone hydrogen-bonding pattern. However, the assignment of secondary structure elements (SSEs) becomes a challenge when only the Cα coordinates are availabl...
متن کاملProtein secondary structure analysis with a coarse-grained model
The paper presents a geometrical model for protein secondary structure analysis which uses only the positions of the Cα-atoms. We construct a space curve connecting these positions by piecewise polynomial interpolation and describe the folding of the protein backbone by a succession of screw motions linking the Frenet frames at consecutive Cα-positions. Using the ASTRAL subset of the SCOPe data...
متن کاملAn Algorithm for Protein Helix Assignment Using Helix Geometry
Helices are one of the most common and were among the earliest recognized secondary structure elements in proteins. The assignment of helices in a protein underlies the analysis of its structure and function. Though the mathematical expression for a helical curve is simple, no previous assignment programs have used a genuine helical curve as a model for helix assignment. In this paper we presen...
متن کاملHelix Segment Assignment in Proteins Using Fuzzy Logic
The automatic assignment of protein secondary structure from three dimensional coordinates is an essential step in the characterization of protein structure. <span style="font...
متن کاملImproving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning
Direct prediction of protein structure from sequence is a challenging problem. An effective approach is to break it up into independent sub-problems. These sub-problems such as prediction of protein secondary structure can then be solved independently. In a previous study, we found that an iterative use of predicted secondary structure and backbone torsion angles can further improve secondary s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of molecular sciences
دوره 17 3 شماره
صفحات -
تاریخ انتشار 2016